203. Bilden sich aus Pentafulven und Cyclopentadien [6+4]-Cycloaddukte?¹)

von Urs Niggli²) und Markus Neuenschwander*

Institut für Organische Chemie der Universität Bern, Freiestrasse 3, CH-3012 Bern

(12.IX.90)

Does [6+4] Cycloaddition between Pentafulvene and Cyclopentadiene Take Place?

Reaction of a 1:1 mixture of cyclopentadiene (CPD) and pentafulvene (1a) at 20° gives a complex mixture. The low-molecular-weight part mainly consists of pure and mixed dimers (*ca.* 73%) besides corresponding trimers (*ca.* 20%) and some corresponding oligomers according to GC/MS investigations (*Fig. 1*). The 3 predominant 'mixed dimers' between CPD and 1a have been separated, and structures 4-6 (*Scheme 3*) are assigned according to 400- and 600-MHz ¹H-NMR investigations. These results show that HOMO(CPD)-LUMO(fulvene) interactions are important in pentafulvene cycloadditions. Dimer 6 results from [6+4] cycloaddition followed by [1,5]-H shifts.

1. Einleitung. – Pentafulvene sind cyclisch gekreuzt konjugierte Triene, die bei Cycloadditionen grundsätzlich als 2π -, 4π - und 6π -Systeme reagieren können³). Wie vor allem *Houk* gezeigt hat, kann die Periselektivität von Pentafulvenen in vielen Fällen durch Grenzorbital-Betrachtungen erklärt werden [4]. Das energetisch recht hochliegende HOMO⁴) von Pentafulven (1a) ist durch eine Knotenebene durch die exocyclische Doppelbindung gekennzeichnet (*Schema 1*). Dies erklärt, weshalb unpolare Pentafulvene bei Umsetzungen mit Enen (wie Maleinsäureanhydrid [7] oder Ethylenetetracarbonitril [8]) oder mit Dienen (wie Cyclopentadienonen [9]), welche ein tiefliegendes LUMO aufweisen, als 4π - oder als 2π -Komponente reagieren. Andererseits weist das LUMO von Pentafulvenen 1 grosse *Hückel*-Koeffizienten an C(6) auf, so dass [6+4]-Cycloadditionen von Pentafulvenen mit Dienen wie Butadien-1-aminen [10] oder Isobenzofuranen [11] verständlich werden, welche sich durch ein hochliegendes HOMO auszeichnen.

Wendet man Grenzorbital-Betrachtungen auf Dimerisierungen von Pentafulven (1a) an, so ist die Energiedifferenz E(HOMO)-E(LUMO) in allen Fällen naturgemäss gleich, so dass nach der Gleichung von *Klopman* und *Salem* [12] die Summe der Produktquadrate der *Hückel*-Koeffizienten der reagierenden Orbitale das Reaktionsgeschehen bestimmen sollte. Sieht man demnach von polaren sowie von sterischen Effekten ab, so sollte die [6+4-Dimerisierung (*Weg A*) gegenüber den [4+2]-Cycloadditionen (*Wege B* und *C*) eher begünstigt sein, während von den beiden [4+2]-Prozessen *Weg B* etwas günstiger ist als *Weg C* (*Schema 1*).

¹) 60. Mitteilung über Fulvene, Fulvalene; 59. Mitteilung: [1].

²) Teil der Diplomarbeit [2].

³⁾ Neue Übersicht: [3]. Zur Anwendung von Grenzorbital-Betrachtungen auf Pentafulvene vgl. [4] und [5].

⁴) Die energetische Lage von HOMO und NHOMO kann aus PE-Spektren [6] abgeschätzt werden. Die Ionisationspotentiale I_v betragen $I_{v,1} = 8,55$ und $I_{v,2} = 9,54$ eV.

Schema 1. HOMO und LUMO sowie Dimerisierungswege von Pentafulven (1a)⁵)

Überraschenderweise zeigen die experimentellen Ergebnisse, dass bei der Dimerisierung einfacher Pentafulvene Weg C dominiert (Schema 2): Pentafulven (1a) selbst bildet beim Stehen bei 20° nebst Oligomeren (ca. 20%) zu ca. 70% das endo-Dimere 2a [13]. Ein ähnliches Verhalten wird bei 6-Methylfulven (1b) und 6,6-Dimethylfulven (1c) beobachtet, allerdings nimmt die Reaktionsgeschwindigkeit in der Reihe $1a > 1b \gg 1c$ deutlich ab. Alle Dimere 2 sind thermisch recht instabil: Während sich beim Erwärmen benzolischer Lösungen von 2b und 2c auf 70° ein Gleichgewicht mit den Monomeren 1b und 1c ausbildet, lagert sich das Dimer 2a unter formaler 1,3-Wanderung ins Dimer 3a um. Wegen dieser thermischen Instabilität war eine exakte GC-Analyse der Umsetzungen unmöglich. Dadurch konnte kein Aufschluss darüber erhalten werden, ob noch andere Cycloadditionen (vgl. Schema 1) als Nebenreaktionen ablaufen.

Schema 2. Experimentelle Ergebnisse

Trotz der Voraussagen der Grenzorbital-Theorie sind bis heute für einfache Pentafulvene keine [6+4]-Dimere nach Weg A und keine [4+2]-Dimere nach Weg B nachgewiesen worden⁶). Die Gründe für das Überwiegen von Weg C sind im einzelnen nicht bekannt, doch könnten besonders bei 6,6-Dialkylpentafulvenen sterische Effekte verantwortlich sein, welche die Annäherung gemäss Weg A und Weg B erschweren.

⁵) Hückel-Koeffizienten berechnet nach CNDO/2.

⁶) Nach sechsmonatigem Erhitzen von reinem 1c auf 60° wird mit hoher Ausbeute ein Trimeres isoliert, welches das Struktur-Element eines [6 + 4]-Dimers aufweist [14]. Daraus ergeben sich Hinweise darauf, dass unter Gleichgewichtsbedingungen 1c ≠ 2c [6 + 4]-Dimersisierung von 1c einsetzen kann, wobei das Dimer dann durch eine [4 + 2]-Cycloaddition mit überschüssigem 1c abgefangen wird.

Bei der Umsetzung eines (1:1)-Gemischs von Cyclopentadien und **1a** sind wohl mehr Produkte zu erwarten als bei der Dimerisierung von **1a**, doch bietet die Umsetzung einige Vorteile: Einmal ist zu erwarten, dass die gemischten (1:1)-Cycloaddukte thermisch etwas weniger empfindlich sind als die reinen Dimeren **2**, was die GC-Analyse der Reaktionsprodukte erleichtert. Sodann sind sterische Wechselwirkungen bei der Annäherung von Cyclopentadien und **1a** kleiner als bei der von zwei Molekülen von **1a**, so dass nun Cycloadditionen nach Weg A und B⁷) womöglich begünstigt ablaufen. Vor allem aber ist Cyclopentadien ein Dien mit vergleichsweise hochliegendem HOMO, dessen Orbital-Symmetrie gleich der des HOMO von **1a** ist. Somit sind auch für die Umsetzung von Cyclopentadien mit Pentafulven (**1a**) alle Reaktionswege A, B und C von Schema I möglich, wenn **1a** mit dem LUMO reagiert⁷). Die ausserdem denkbare Umsetzung von Cyclopentadien (LUMO) mit **1a** (HOMO) würde ebenfalls zu dem nach Weg C (Schema I) erwarteten Reaktionsprodukt führen. Diese Vorteile veranlassten uns, die Cycloaddition zwischen Cyclopentadien (CPD) und Pentafulven (**1a**) eingehender zu untersuchen.

2. Cycloaddition von Cyclopentadien und Pentafulven. – Bei der Umsetzung eines tiefgelben (1:1)-Gemischs von CPD und **1a** unter Inertgas und Lichtausschluss tritt innerhalb eines Tages bei 20° weitgehend Entfärbung ein, und nach 3-4 Tagen ist ein fast farbloser Gel-Pfropfen entstanden, welcher mit CH₂Cl₂ extrahierbar ist. Das anal. GC des Extrakts (Fig. 1) zeigt in Kombination mit den Ergebnissen einer GC/MS-Untersuchung, dass neben reinen und gemischten Trimeren vor allem die entsprechenden Dimeren entstanden sind. In der Fraktion der Dimeren ist 'Di-cyclopentadien' (DI-CPD) mit M^+ 132 (12,1%)⁸) uninteressant. Bei den reinen Fulven-Dimeren mit M^+ 156 (5,4 und 3,5%) dürfte es sich um die bereits früher isolierten Verbindungen **3a** bzw. **2a** handeln; sie sind angesichts ihrer bekannten thermischen Umwandelbarkeit sowie des geringen Anteils nicht untersucht worden. Ausserdem sind mindestens fünf gemischte Dimere 4-6 und A und B erkennbar, die im anal. GC insgesamt einen Flächenanteil von rund 50% ausmachen und unter welchen die Dimeren 4 (19,5%), 5(22,4%) und 6(6,2%) überwiegen. Diese drei Dimeren lassen sich im anal. GC auf chiraler stationärer Phase in Enantiomere auftrennen. Fraktion **B** besteht nach Fig. 1 wahrscheinlich aus zwei Komponenten. Vergleicht man die Anzahl der analytisch nachgewiesenen gemischten Cycloaddukte mit der Anzahl der zu erwartenden Isomeren, so ist die Möglichkeit, dass sich unter den gemischten Dimeren ein [6 + 4]-Cycloaddukt befindet, recht gross.

Durch einfache Kugelrohrdestillation bei $10-50^{\circ}/10^{-4}-10^{-5}$ Torr lässt sich die Fraktion der Dimeren fast quantitativ von der Trimer-Fraktion trennen. Dagegen erweist sich eine präparative Trennung der aus Verbindungen sehr ähnlicher Polarität bestehenden Fraktion der Dimeren als sehr schwierig. Versuche mittels präp. DC, HPLC oder 'flash'-Chromatographie ergeben keine genügende Auftrennung, und selbst präp. GC führt unter optimalen Bedingungen nur zu einer Anreicherung der Dimeren 4 (72%), 5 (93%) und 6 (68%), während sich das uninteressante Di-CPD rein isolieren lässt. Trotz der geringen Reinheit ist die Strukturaufklärung von 4–6 mittels 400-MHz- und 600-MHz-'H-NMR-Spektroskopie gelungen.

⁷) Für die MO-Beschreibung der Umsetzung von Cyclopentadien mit 1a ist in Schema 1 (unten) jeweils das exocyclische C-Atom wegzulassen, welches keinen Hückel-Koeffizienten aufweist.

Fig. 1. Anal. GC der Reaktionsprodukte aus Cyclopentadien und $1a^9$). Säule SE 54; 40·250°, 3°/min; Lsgm. CH₂Cl₂; $t_{\rm R}$ = Retentionszeit (min). In Klammern: M^{+} der Fraktion im MS.

3. Struktur der Dimeren 4–6. – Die Struktur der angereicherten Hauptprodukte der Fraktion der Dimeren wurde vor allem durch ¹H-NMR-, ¹³C-NMR- und MS-Untersuchungen abgeleitet. Im folgenden werden nur die ¹H-NMR-Spektren (s. *Fig. 2* und *3* und *Tab.*) diskutiert, welche für die Strukturzuordnungen von 4–6 entscheidend sind.

Die Strukturzuordnung von Dimer 5 kann sehr leicht durch Vergleich der ¹H- und ¹³-C-NMR-Spektren mit denjenigen von Di-CPD erfolgen. Im ¹H-NMR-Spektrum von Di-CPD (Fig. 2a) erscheinen H-C(8) und H-C(9) je als dd (J(8,9) = 5,72, J(9,1) = 2,99, J(8,7) = 2,93 Hz) bei 5,97 und 5,93 ppm. H–C(3) und H–C(4) sind zufällig beinahe äquivalent (5,5 ppm). H-C(2) bildet wegen der Kopplungen mit H-C(6), CH₂(5), H-C(4), H-C(3) und H-C(1) ein komplexes m bei 3,21 ppm. H-C(1) und H-C(7) weisen mit Ausnahme von J(1,2) und J(6,7) nur kleine Kopplungen auf und erscheinen annähernd als breite s bei 2,78 und 2,87 ppm. Sehr typisch ist die Aufspaltung von H–C(6) als ddt: Die Kopplungen mit H_d–C(5) (10,20 Hz), H–C(2) (8,69 Hz), H_c–C(5) (4,23 Hz) und H–C(7) (4,23 Hz) sind charakteristisch, wobei aus der Grösse von J(6,7) die endo-Konfiguration hervorgeht. Auch H-C(5), das bei 2,18 ppm absorbiert, zeigt als ddq ein sehr ausgeprägtes Aufspaltungsmuster, da die kleinen Kopplungen J(5d,4), J(5d,3) und J(5d,2) mit ca. 1,9 Hz zufälligerweise annähernd gleich gross sind. Die grosse geminale Kopplung J(5c,5d) = 17,29 Hz zeigt an, dass H_c-C(5) bei 1,62 ppm liegen muss. Schliesslich entspricht das AB-System bei 1,48 und 1,29 ppm den Brückenprotonen H_{b} -C(10) und H_{a} -C(10), wobei die t-Aufspaltung von $H_a-C(10)$ durch Fernkopplungen mit H-C(8) und H-C(9) verwischt wird. Diese Zuordnungen lassen sich durch COSY-Experimente leicht beweisen. Im 400-MHz-¹H-NMR-Spektrum von 5 (Fig. 2b) sind im Vergleich zu Di-CPD (Fig. 2a) die Signale bei 2,18 und 1,62 pm verschwunden. Dafür wird ein schmales m der neuen exocyclischen CH₂=C(5)-Gruppe bei 4,76 ppm beobachtet. H-C(6) liegt im Vergleich zu Di-CPD um 0,4 ppm nach höherer Frequenz verschoben (Einfluss von $CH_2=C(5)$), und wegen der neuen Fernkopplungen sind die *m* von H-C(2) bei 3,26 ppm und von H-C(6) bei 3,13 ppm verwischt worden. Dagegen sind Lage und Aufspaltung von H-C(1), 2H-C(10) und H-C(7) unverändert, und der Olefin-Bereich erscheint nur wegen der Überlappung von H-C(3) und H-C(8) gegenüber Di-CPD verändert.

⁸) Flächenanteil bezogen auf Gesamt-Integral.

 ⁹) Retentionszeit (Fläche in %⁸)) der Fraktionen: 10,6 (12,1), 13,2 (19,5; 4), 14,2 (22,4; 5), 15,3 (I,8; A), 16,5 (1,1; B), 17,2 (5,4), 18,0 (6,2; 6), 18,7 (3,5), 20,9 (1,1), 35,6 (8,0), 36,1 (1,6), 36,4 (7,4) und 39,5 (3,2) min; Rest (6,7).

3,26

H-C(9)

H-C(4) ~5,88

296

HELVETICA CHIMICA ACTA - Vol. 73 (1990)

Fig. 2. ¹H-NMR-Spektren (400 MHz, CDCl₃) von a) 'Di-cyclopentadien' (= Tricyclo[5.2.1.0^{2,6}]deca-3,8-dien) und b) 5 3,2 4,8 5,6

90 20

-0,9

2203

(e

Aus dem ¹H-NMR-Spektrum von Dimer **4** (*Fig. 3a*) geht sogleich hervor, dass das Norbornen-Strukturelement vorhanden ist (vgl. oben; Vinyl-Protonen als *dd* bei 6,30 (H–C(5)) und 6,08 ppm (H–C(6)) mit J(5,6) = 5,60und J(1,6) = 3,01 bzw. J(4,5) = 3,10 Hz; Brückenkopf-Protonen H–C(1) und H–C(4) bei 2,55 und 3,05 ppm; typisches J(7a,7b) von 8,54 Hz; gleiche Feinstruktur des Signals von H_a–C(7) (1,73 ppm wie bei **5**). Auffällig ist, dass H_b–C(7) (*dtd*, 1,54 ppm) von **4** im Vergleich zum entsprechenden Proton von **5** eine zusätzliche Kopplungskonstante von 2,77 Hz (J(7b,3c)) aufweist, wie sie für eine *W-Kopplung* typisch ist. Entsprechend erscheint das axiale H_c–C(3) als *dd* bei 1,30 ppm ($J_{gem} = 11,69$ Hz; H_d–C(3) bei 1,96 ppm (*dd*, J(3d,4) = 3,63 Hz)). Die sauberen Aufspaltungen der 2 H–C(3) belegen schliesslich, dass das benachbarte C(2) keine Protonen trägt. Die vier 8-Linien-Signale bei 6,38, 6,255, 6,22 und 6,03 ppm sind für ein spiroverknüpftes Cyclopentadien sehr typisch¹⁰).

Wesentlich grössere Schwierigkeiten bieten sich bei der Strukturzuordnung des durch präp. GC-Trennung nur angereicherten Dimers 6: Einmal reduzieren die Verunreinigungssignale den Aussage-Wert von H,H-COSY-Experimenten, und zum andern treten im ¹H-NMR-Spektrum selbst bei 600 MHz Signal-Überlappungen auf. Laut ¹³C-NMR-Spektrum enthält 6 2 quartäre C (146,1 und 141,7 ppm), 4 Vinyl-CH (136,7, 134,1, 127,8 und 120,5 ppm), 2 Alkyl-CH (41,0 und 38,1 ppm) und 3 Alkyl-CH₂ (40,5, 39,4 und 28,4 ppm). Es dürfte also ein [6+4]-Cycloaddukt des Typs 6 vorliegen. Aus einer ¹³C, ¹H-Verschiebungskorrelation resultieren folgende Zuordnungen der CH2-Gruppen: C(28,4 ppm)/2 H (2,66 und 2,49 ppm), C(39,4 ppm)/2 H (2,84 ppm) und C(40,5 ppm)/2 H (2,15 und 1,74 ppm). Im Vinyl-Bereich des hochaufgelösten 600-MHz-¹H-NMR-Spektrums von 6 absorbiert ein dd (J = 5,57, 2,86 Hz) bei 5,91 ppm. Entkopplungsexperimente zeigen, dass ein weiteres ähnliches $dd (J \approx 5,6,$ 2,8 Hz) unter dem Signal bei ca. 6,0 ppm (2H) verborgen ist. Die beobachteten Aufspaltungen sind denjenigen von Norbornenen sehr ähnlich (vgl. 4: J(5,6) = 5,60, J(1,6) = 3,01 und J(4,5) = 3,10 Hz). Ebenso zeigen selektive Entkopplungen, dass das eine Brückenkopf-Proton von 6 dem dd bei 3,41 ppm entspricht, während das andere bei ca. 2,83 ppm komplizierter aufgespalten ist und mit der CH2-Gruppe bei 2,84 ppm überlappt. Als Brücke, welche die beiden Brückenköpfe verknüpft, kommt nach COSY-Experimenten nur die CH2-Gruppe in Frage, welche das m bei 2,15 und das d bei 1,74 ppm erzeugt. Die beiden Protonen koppeln mit 10,44 Hz, der Wert ist etwas grösser als bei Norbornenen (vgl. 4: J(7a,7b) = 8,54 Hz). Vor allem überrascht im Vergleich mit Norbonenen, dass das eine Brückenkopf-Proton ein d, das andere jedoch angenähert ein dtd erzeugt! Auch lässt sich ein (Cyclopenta-1,4-dien-1,5-diyl)-Strukturelement nachweisen. Dazu gehören die Signale von 2 verwischten q im Vinyl-Bereich bei 6,02 (durch Überlappung teilweise verdeckt) und 5,84 ppm ($J \approx 1,5$ Hz), ferner die CH₂-Gruppe bei 2,84 ppm. Die verwischte Feinaufspaltung kommt dadurch zustande, dass jedes Vinyl-Proton mit allen andern Fünfring-Protonen in ähnlichem Ausmass koppelt. Voraussetzung dafür ist, das der Cyclopentadien-Ring in den Stellungen 2 und 3 verknüpft ist. Andernfalls wären ³J-Kopplungen zwischen Vinyl-Protonen von rund 5,2 Hz zu erwarten (vgl. 4). Die 'Norbornen'- und Cyclopentadien-Teilstrukturen sind über eine CH2-Gruppe zu verknüpfen (feinstrukturiertes AB-System bei 2,66 und 2,49 ppm). Diese beiden Protonen koppeln nämlich sowohl mit einem Brückenkopf-Proton des 'Norbornen'-Teils als auch mit Protonen des Cyclopentadien-Teils, während zusätzlich ein Proton eine W-Kopplung mit Hb des 'Norbornen'-Teils aufweist (selektive Entkopplungs- und COSY-Experimente).

Damit ist der Strukturvorschlag 6 festgelegt. Die auffallend unterschiedlichen Kopplungen der CH₂(11)-Brücke mit den Brückenkopf-Protonen (J(1,11b) = 4,70, J(8,11b) = 5,2, J(1,11a) und J(8,11a) < 0,5 Hz) lässt sich mit der Änderung der Diederwinkel beim Übergang von Norbornenen des Typs 4 und 5 zu Bicyclo[3.2.1]octenen des Typs 6 erklären. Modellbetrachtungen zeigen, dass durch die Ringerweiterung die Diederwinkel zwischen H–C(8)–C(11)–H_b und H–C(1)–C(11)–H_b abnehmen, was eine Zunahme von J(1,11b) und J(8,11b) zur Folge hat. Andererseits liegen die Diederwinkel zwischen H–C(8)–C(11)–H_a und H–C(1)–C(11)–H_a bereits um 80°, weshalb die Kopplungskonstanten J(1,11a) und J(8,11a) sehr klein werden. Dies wird durch die Daten des

¹⁰) Die Kopplungskonstanten sind denjenigen von 6-Acetoxypentafulven [15] (in Klammern) schr ähnlich: J(2',3') = 5,23 (5,24), J(2',4') = 1,38 (1,40), J(2',5') = 2,11 (1,99), J(3',4') = 1,88 (2,05), J(3',5') = 1,44 (1,43), J(4',5') = 5,23 (5,30 Hz).

Tabelle. ¹H- und ¹³C-NMR-Signallagen (δ in ppm) sowie gesicherte H,H-Kopplungskonstanten von Di-CPD sowie von 4-6^a)

Atom- Nr. ^a)	Hb 10 Ha		H _b 10 H _a		Hb 7 Ha		H _b 11 H _a		
	9 1 2 4 Hd		9 1 2 4 H_d		$5 \xrightarrow{4} \frac{1}{H_c} \frac{1}{H_$		$10 \qquad 12 \qquad 3 \\ 7 \qquad 6 \qquad 5 \\ H_c \qquad 4 \\ H_c \qquad 5 $		
	Di-C	Di-CPD		5		4 ^a)		6	
	$\delta(^{1}H)$	$\delta(^{13}C)$	$\delta({}^{1}\mathrm{H})^{\mathrm{b}})$	δ(¹³ C)	$\delta(^{1}\mathrm{H})$	$\delta(^{13}\text{C})$	$\overline{\delta({}^{1}\mathrm{H})^{\mathrm{g}}})$	$\delta(^{13}\text{C})$	
1	2,776	45,04	2,79	43,87	2,550	50.80	3,41	41,0	
2	3,208	54,66	3,26	52,37	-	62,91		146,1	
3	5,50 ^e)	131,88 ^r)	5,89 ^e)	140,17	1,295°) 1,959 ^d)	30.25	5,84	120,5	
4	5,47 ^e)	131,83 ^f)	5,96	136,77	3,049	43,76	2,84 ^g) 2,84 ^g)	39,4	
5	1,617 ^c) 2,177 ^d)	34,54	-	155,38	6,298	137,60	6,02	127,8	
6	2,720	41,06	3,13	46,74	6,084	136,20		141,7	
7	2,869	46,06	3,04	46,36	1,732 ^h) 1,546 ⁱ)	49,30	2,66 ^d) 2,49 ^d)	28,4	
8	5,974	132.21	5,87 ^e)	133,14 ^f)	6,380	145,51	2,83	38,1	
9	5,926	135,84	5,82	133,36 ^f)	6,255	128,51	5,91	134,1	
10	1,294 ^h) 1,476 ⁱ)	50.19	1,37 ^h) 1,53 ⁱ)	50,12	6,216	128,64	6,01	136,7	
11	_	-	4,76 ^g) 4,76 ^g)	103,25	6,033	144,24	1,74 ^h) 2,15 ⁱ)	40,5	
<i>J</i> (H,H)	J(7, 6) = 4,23, J(7, 8) = 2,93,		J(7, 6) = 4,57, J(6, 4) = 0,50,		J(1, 6) = 3,01, J(1, 7b) = 1,75,		J(1, 10) = 2,88,		
	J(7, 10b) = 1,75, J(6, 5c) = 4,23,		J(6, 2) = 6,94, J(4, 3) = 5,58,		J(3c, 3d) = 11,69, J(3c, 7b) = 2,77		J(1, 11b)	J(1, 11b) = 4,70,	
	J(6, 5d) = 10,20, J(6, 2) = 8,69,		J(4, 2) = 1,67, J(3, 2) = 2,54,		J(3d, 4) = 3,63, J(4, 5) = 3,10,		J(7c, 7d) = 17,09,		
	J(5c, 5d) = 17,29, J(1, 9) = 2,99,		J(2, 1) = 4,19, J(1, 9) = 2,94,		J(5, 6) = 5,60, J(7a, 7b) = 8,54,		J(7c, 11b) = 1,71,		
	J(1, 10b) = 1,75, J(8, 9) = 5,72,		J(8, 9) = 5,64, J(10a, 10b) = 8,09		J(8, 9) = 5,23, J(8, 10) = 1,38,		J(8, 9) =	J(8, 9) = 2,86,	
	J(10a, 10b) = 7,95				J(8, 11) = 2,11, J(9, 10) = 1,88,		J(8, 11b) = 5,2,		
					J(9, 11)	= 1,44, J(10,11) = 5,23,	J(9, 10) J(11a, 1	= 5,57, 1b) = 10,44	

a) Willkürliche Numerierung; systematische Numerierung im Text und im Exper. Teil.

- ^e) Wegen Überlappung ungenau.
- f) Nicht sicher unterscheidbar.
- g) Zufällig äquivalent.
- h) H_a.
- ⁱ) H_b.

2,3:6,7-dibenzo-anellierten Bicyclo[3.2.1]octa-2,6-dien-4-ols 7 [2] belegt $(J(1,8b) = 4,5, J(5,8b) = 4,6, J(1,8a) \approx 0$ und J(5,8a) = 1,3 Hz).

4. Diskussion. – Bei der Umsetzung äquimolarer Mengen von Cyclopentadien und Pentafulven (1a) entsteht bei Raumtemperatur ein sehr komplexes Gemisch, in welchem nach Abzug der Polymeren die Fraktion der Dimeren mit einem Gesamtanteil von rund 73 % überwiegt⁸)⁹). In der Fraktion Dimeren sind die 'gemischten Dimeren' 4–6 und A

^b) Rundung auf 0,01 ppm, da die Lsg. kein TMS enthielt.

^{°)} H_c.

^d) H_d.

und **B** mit 51% wesentlich stärker vertreten als 'Di-cyclopentadien' mit rund 12% oder als die Fulven-Dimeren mit 10%. Trotz grosser Trennprobleme ist es gelungen, die mengenmässig wichtigsten Dimere **4–6** zu isolieren und so anzureichern, dass eine spektroskopische Strukturaufklärung möglich war. Die Resultate sind in *Schema 3* zusammengefasst.

Das zu 22,4 $\%^8$) vertretene [4 + 2]-Cycloaddukt 5 ist aufgrund von Erfahrungswerten [3] [16] als Hauptprodukt erwartet worden. Dabei kann Pentafulven (1a) sowohl mit dem HOMO als auch mit dem LUMO reagiert haben (vgl. *Schema 1*). Andererseits kann die Bildung der Dimere 4 und 6 nur dann erklärt werden, wenn die Wechselwirkung zwischen dem HOMO von Cyclopentadien sowie dem LUMO von 1a Bedeutung hat. Somit werden alle nach *Schema 1* durch HOMO(CPD)-LUMO(1a) erwarteten Dimere beobachtet. Vor allem überrascht der hohe Anteil (19,5 $\%^8$)) des Dimers 4, bei welchem 1a mit der exocyclischen Doppelbindung reagiert hat. Ein solches Verhalten von Pentafulvenen war bisher unbekannt. Dimer 6 lässt sich auf eine [4 + 6]-Cycloaddition zurückführen, wobei sich das Primärprodukt über eine Folge von [1,5]-H-Verschiebungen zum offensichtlich thermodynamisch günstigsten Tautomeren 6 isomerisierte. Verbindung 6 ist kürzlich auf anderem Wege erstmals hergestellt worden [17].

Die vorliegenden Untersuchungen belegen die Vielfalt der Reaktionsmöglichkeiten von Pentafulven (1a) bei Cycloadditionen und zeigen erstmals, dass 1a sowohl mit der exocyclischen Doppelbindung, als auch als 6π -System reagieren kann.

Die Autoren danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (Projekt Nr. 20-26167.89) für die Unterstützung der Arbeit, Herrn R. Saxer für die GC-Trennungen sowie der Spektrospin AG (Dr. D. Moskau) für die 600-MHz-¹H-NMR-Spektren.

Experimenteller Teil

Synthese von Pentafulven (1a). S. [18].

Reaktion von **1a** mit Cyclopentadien (CPD). Unter Ar und bei RT. werden zu 1,4 g (18 mmol) **1a** mittels Spritze 1,5 ml (18 mmol) frisch dest. CPD gegeben. Man verschliesst und hält während 5 Tagen unter Lichtausschluss bei RT., wobei sich die anfangs gelbe Flüssigkeit entfärbt und zu einem Gel-Pfropfen erstarrt. Der Gel-Pfropfen wird mit 5 ml abs. CH_2Cl_2 versetzt, mit dem Glasstab zerstossen, die Suspension kurz mittels Magnetrührer gerührt, und die Lsg. mit einer Pipette abgesaugt. Das Verfahren wird 4mal wiederholt, die vereinigte CH_2Cl_2 -Lsg. durch einen Wattebausch filtriert und bei 0°/10 Torr eingedampft: 1,95 g (75%) Rohprodukt, das noch Spuren von CH_2Cl_2 enthält. Anal. GC s. Fig. 1. Das Rohprodukt wird im Kugelrohr bei 20–50°/10⁻⁴–10⁻⁵ Torr destilliert: 1,58 g (61%) Dimer-Fraktion mit einem Dimer-Anteil von *ca.* 97% (GC). Destillation des Rückstandes bei 50–200°/10⁻⁴–10⁻⁵

Torr ergibt 0,175 g (6,7%) Trimer-Fraktion mit einem Trimer-Anteil von *ca.* 99%. Destillationsrückstand 0,2 g (7,7%). Die Fraktion der Dimeren (723 mg) wird durch verlustreiche präp. GC aufgetrennt (exper. Details vgl. [2]; *Perkin-Elmer-F-21-Gerät*, FI-Detektor, Splitverhältnis 1:100; Schreiber *Speedomax W*; gepackte Säule 2 × 43 cm mit ID 10 mm, stationäre Phase 20% Carbowax 20 M auf Chromosorb A; Trägergas N₂, 160 ml/min; Einspritzblock 140°, Säulenofen 80–150°, Verteilerofen 170°, Verbindungsrohr 160°; Kühlfalle – 30°; Einspritzvolumina je 16 µl) in die folgenden Dimeren (GC-Reinheitsgrad in %): 100 mg Di-CPD (99,8%), 55 mg *Spiro[bicy-clo[2.2.1]hept-5-en-2,1'-cyclopenta-2',4'-dien]* (4; 71,8%); 146 mg *5-Methylidentricyclo[5.2.1.0^{2.6}]deca-3,8-dien* (5; 93%) und 64 mg *Tricyclo[6.2.1.0^{2.6}]undeca-2,5,9-trien* (6; 68%).

LITERATURVERZEICHNIS

- [1] P. Bönzli, M. Neuenschwander, Helv. Chim. Acta 1991, 74, eingereicht.
- [2] U. Niggli, Diplomarbeit, Bern, 1990.
- [3] M. Neuenschwander, 'Fulvenes', in 'The Chemistry of Double-Bonded Functional Groups', Ed. S. Patai, John Wiley, London, 1989.
- [4] K. N. Houk, Topics Curr. Chem. 1979, 79, 1.
- [5] I. Fleming, 'Frontier Orbitals and Organic Chemical Reactions', John Wiley, London, 1976; s. S. 173.
- [6] E. Heilbronner, F. Brogli, P.A. Clark, M. Neuenschwander, Angew. Chem. 1973, 85, 414; ibid. Int. Ed. 1973, 12, 421.
- [7] J. Thiec, J. Wiemann, Bull. Soc. Chim. Fr. 1956, 177; ibid. 1957, 366.
- [8] A. Cornelis, B. Laszlo, J. Am. Chem. Soc. 1975, 97, 244.
- [9] K. N. Houk, L. J. Luskus, J. Org. Chem. 1972, 38, 3836.
- [10] A. Bino, M. Ardon, I. Moor, M. Kaftory, Z. Dori, J. Am. Chem. Soc. 1976, 98, 7095.
- [11] H. Takeshita, A. Mori, S. Sano, Y. Fujise, Bull. Chem. Soc. Jpn. 1975, 48, 1661.
- [12] G. Klopman, J. Am. Chem. Soc. 1968, 90, 223; L. Salem, ibid. 1968, 90, 543, 553.
- [13] B. Uebersax, M. Neuenschwander, H.-P. Kellerhals, Helv. Chim. Acta 1982, 65, 74.
- [14] B. Uebersax, M. Neuenschwander, P. Engel, Helv. Chim. Acta 1982, 65, 89.
- [15] R. Hollenstein, W. von Philipsborn, R. Vögeli, M. Neuenschwander, Helv. Chim. Acta 1973, 56, 847.
- [16] P. Yates, 'Fulvenes', in 'Advances in Alicyclic Chemistry', Academic Press, New York, 1968, S. 59.
- [17] J. Iopatschki, J. Herber, H.-O. Kalinowski, R. Boese, Chem. Ber. 1990, 123, 305.
- [18] M. Neuenschwander, R. Iseli, Helv. Chim. Acta 1977, 60, 1061.